## Short C-C Bonds

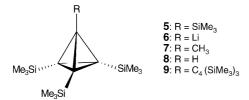
DOI: 10.1002/ange.200501605

## Hexakis(trimethylsilyl)tetrahedranyltetrahedrane\*\*

Masanobu Tanaka and Akira Sekiguchi\*

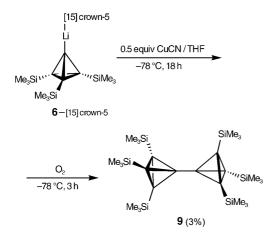
The most important factor for bond shortening is the increase in s character of the bond orbital.<sup>[1]</sup> In 1988, Eaton and coworkers succeeded in the synthesis and structural characterization of cubylcubane (1).<sup>[2]</sup> The bond length between the

$$H_3COOC$$
 $(CH_2)_n$ 
 $(CH_2)_n$ 
 $COOCH_3$ 
 $COOCH_3$ 


two cubane units (1.458 Å) was significantly shorter than the usual carbon-carbon single-bond length (1.54 Å). This bond shortening was attributed to the high s character of the bond orbitals. Later, Ermer et al. synthesized coupled bicyclo-[1.1.0] butane derivatives 2 and 3,<sup>[3]</sup> in which the corresponding C-C bonds have higher s character than that in cubylcubane. As expected, the linking C-C bond lengths in these coupled bicyclo[1.1.0]butane derivatives are further shortened (1.445 and 1.440 Å). Tetrahedrane is the most strained cage compound with the highest degree of s character in the exocyclic bond. Therefore, the linking C-C bond length in tetrahedranyltetrahedrane (4) is expected to be even shorter. Indeed, theoretical studies suggest compound 4 as a candidate for the molecule with the shortest carbon-carbon single bond in a saturated hydrocarbon system.<sup>[4]</sup> However, treatment of substituted tetrahedranes is extremely difficult because of its high strain and, consequently, high reactivity.<sup>[5,6]</sup> Until now, no tetrahedranyltetrahedrane derivative has been synthesized.

Recently, we succeeded in the synthesis and characterization of trimethylsilyl-substituted tetrahedrane derivatives.<sup>[7,8]</sup> Electropositive silyl groups significantly release the inherent ring strain of the tetrahedrane skeleton. For

<sup>[\*]</sup> Dr. M. Tanaka, Prof. Dr. A. Sekiguchi Department of Chemistry Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba, Ibaraki 305-8571 (Japan) Fax: (+81) 298-53-4314 E-mail: sekiguch@staff.chem.tsukuba.ac.jp


<sup>[\*\*]</sup> This work was supported by a Grant-in-Aid for Scientific Research (Nos. 147078204, 16205008) from the Ministry of Education, Science, and Culture of Japan, a JSPS Research Fellowship for Young Scientists (M.T.), and a COE (Center of Excellence) program. We thank Professor Günther Maier for helpful discussions and advice.

## Zuschriften



example, tetrakis(trimethylsilyl)tetrahedrane (5) is stable in the presence of air and moisture at temperatures up to 300 °C. We also synthesized and isolated tetrahedranyllithium 6 as a thermally stable compound which is a good precursor for other tetrahedrane derivatives.<sup>[8]</sup> Indeed, we succeeded in the synthesis of methyl- and hydrogen-substituted tetrahedranes (7 and 8, respectively) from tetrahedranyllithium. Surprisingly, tetrahedranes with smaller substituents and hence a lower steric protection were stable in air and at temperatures up to 100 °C. In the <sup>1</sup>H NMR spectrum of hydrogen-substituted tetrahedrane 8, a very large ring C-H coupling constant was observed which is comparable to that of acetylene. From the empirical correlation, we estimated the s character of the ring C-H bond to be 48 %. [8] These results indicate that the C-C link should also have high s character and a very short C-C bond in silyl-substituted tetrahedranyltetrahedrane. Herein, we report the synthesis of hexakis(trimethylsilyl)tetrahedranyltetrahedrane (9) as well as the structural characterization by X-ray crystallography.

Tetrahedrane 9 was synthesized by the oxidative coupling of 6 via a cuprate complex (Scheme 1). First, tetrahedranyllithium 6 was prepared by the reaction of 5 with excess methyllithium in THF, and the ligand of 6 was changed from



**Scheme 1.** Synthesis of hexakis(trimethylsilyl)tetrahedranyltetrahedrane (9).

THF to [15]crown-5 to remove the remaining methyllithium completely. Reaction of 6 with CuCN (0.5 equiv) at -78 °C in THF gave the cuprate complex, which was subsequently oxidized with oxygen at -78 °C. The reaction mixture was purified consecutively by gel-permeation chromatography (toluene) and HPLC (MeOH/tBuOMe 1:1) equipped with a recycling system, and finally 9 was isolated as a colorless solid

in 3% yield in a pure form. Several other methods to synthesize **9** by the oxidation of **6** with various reagents such as dichlorodicyano-*p*-benzoquinone, tetracyano-*p*-benzoquinone, NO<sup>+</sup>PF<sub>6</sub><sup>-</sup>, and (C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>B were performed; however, no trace amount of **9** was formed.

Compound **9** was stable in air and up to 200 °C. The most important stabilizing factor can be attributed to the electronic effect of the trimethylsilyl groups, as found in **5**.<sup>[7]</sup> The  $^{1}$ H,  $^{29}$ Si, and  $^{13}$ C NMR spectra of **9** in [D<sub>6</sub>]benzene demonstrated its high symmetry. Only one signal was observed for the trimethylsilyl groups in the  $^{1}$ H NMR ( $\delta$  = 0.22 ppm) and  $^{29}$ Si NMR ( $\delta$  = -2.5 ppm) spectra, and three signals appeared at  $\delta$  = -18.0 (ring C–Si), -4.7 (linking ring C), and 0.07 ppm (SiMe<sub>3</sub>) in the  $^{13}$ C NMR spectrum. The large upfield shift of the ring C atom is typical for tetrahedrane. [7-10] The linking carbon atom shows a remarkably downfield shift relative to that of the silicon-substituted skeletal carbon atom because of the different electronegativities of the Si and C substituents and the high s character of the linking carbon atoms.

The molecular structure of tetrahedranyltetrahedrane **9** was determined by X-ray crystallographic analysis without disorder phenomena. X-ray-quality single crystals were obtained by crystallization from ethanol at 5 °C. As shown in Figure 1,<sup>[11]</sup> the bulky trimethylsilyl groups sterically

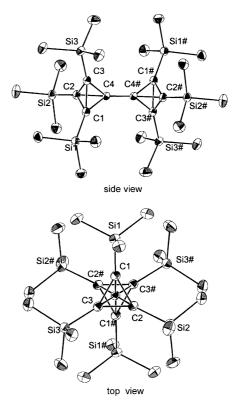



Figure 1. Structure of 9 (ORTEP plot; thermal ellipsoids set at 30% probability; hydrogen atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: C1-C2 1.523(2), C1-C3 1.528(2), C1-C4 1.483(2), C2-C3 1.511(2), C2-C4 1.484(2), C3-C4 1.484(2), C4-C4# 1.436(3), Si1-C1 1.8260(18), Si2-C2 1.8271(18), Si3-C3 1.8250(19); C4-C1-C2 59.13(11), C4-C1-C3 59.05(11), C2-C1-C3 59.39(11), C4-C1-Si1 153.45(14), C2-C1-Si1 140.76(13), C3-C1-Si1 140.42(14), C1-C4-C2 61.76(11), C1-C4-C3 61.97(11), C2-C4-C3 61.21(11), C4#-C4-C1 144.5(2), C4#-C4-C2 142.8(2), C4#-C4-C3 143.87(19).

protect the tetrahedranyltetrahedrane skeleton, and the two tetrahedrane units have a staggered conformation owing to steric repulsion.

As expected, the linking C-C bond length (1.436(3) Å) is shortened considerably, and this experimental value of the bond length is practically identical to the theoretical one. [4] To our knowledge, this is the shortest noncyclic (unbent) C-C single bond between saturated C atoms observed to date. The calculated s character of the linking C-C bond in 9 at the NBO/B3LYP/6-31G level is sp<sup>1.53</sup>, which supports the suggestion that this shortening arises from the high s character of the bond. When the electronegativity increases (from Si to C), the s character of the exocyclic bond decreases. This electronic effect changes the structure of the tetrahedrane skeleton.<sup>[12]</sup> Whereas tetrahedrane 5 has a regular tetrahedral structure, the tetrahedrane units in 9 have a distorted tetrahedral structure. The endocyclic C(C)-C(SiMe<sub>3</sub>) bond lengths (C4-C1, C4-C2, C4-C3) in **9** range from 1.483(2) to 1.484(2) Å (average 1.484(2) Å), whereas the endocyclic C(SiMe<sub>3</sub>)-C(SiMe<sub>3</sub>) bond lengths (C1–C2, C1–C3, C2–C3) range from 1.511(2) to 1.528(2) Å (average 1.521(2) Å), which are longer than those of C-C bond lengths of tetrahedrane 5 (average 1.501(4) Å). The endocyclic C(SiMe<sub>3</sub>)-C(SiMe<sub>3</sub>) bond lengths of 9 (average 1.521(2) Å) are somewhat longer than those of 5 (average 1.501(4) Å) and  $6\cdot$ (tmeda)<sub>1.5</sub> (average 1.4986(15) Å).

It is interesting to compare the lengths of the endocyclic  $C(SiMe_3)-C(R)$  bond: R = Li for 6 (average 1.5425(15) Å),  $R = SiMe_3$  for **5** (average 1.501(4) Å),  $R = C_4(SiMe_3)_3$  for **9** (average 1.484(2) Å); certainly, the electronegativity of R affects the structural features of the tetrahedrane skeleton. In the case of the most electropositive Li atom the C(SiMe<sub>3</sub>)-C(Li) bond has a high p character, thus leading to the elongation of the C-C bond, whereas in the case of moreelectronegative substituents (from SiMe<sub>3</sub> to C<sub>4</sub>(SiMe<sub>3</sub>)<sub>3</sub>) the tendency is the opposite: increase in s character and shortening of the C-C bond.

## **Experimental Section**

9: Tetrakis(trimethylsilyl)tetrahedrane (5)[7] (53 mg, 0.16 mmol) and a tenfold excess of methyllithium were placed in a reaction tube. Dry oxygen-free THF (3.0 mL) was introduced by vacuum transfer and stirred for 24 h. After the solvent was removed, dry oxygen-free hexane (5 mL) was introduced and the insoluble methyllithium in hexane was filtered through celite in a glove box. [15]Crown-5 (0.03 mL) was introduced as a solution in hexane, and the deposited methyllithium was filtered through celite in a glove box. The solvent was placed in a reaction tube and removed in vacuo. The colorless solid 6 was obtained. CuCN (4.5 mg, 0.05 mmol) was added to the reaction tube and dry oxygen-free THF (4 mL) was introduced by vacuum transfer and stirred at -78°C for 18 h, and oxygen gas was bubbled in the solution at -78 °C. After the solvent was removed, the reaction mixture was purified by gel-permeation chromatography (toluene) and HPLC (MeOH/tBuOMe 1:1) equipped with a recycling system. The solvent was removed in vacuo and 9 was obtained as a colorless solid (2.5 mg, 3%); m.p. 209-211 °C; <sup>1</sup>H NMR (400 MHz, [D<sub>6</sub>]benzene, TMS):  $\delta = 0.22 \text{ ppm (s, 54H, SiMe}_3)$ ; <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, [D<sub>6</sub>]benzene, TMS):  $\delta = -18.0$  (C), -4.7 (C), 0.07 ppm (SiMe<sub>3</sub>);  ${}^{29}$ Si{ ${}^{1}$ H} NMR (80 MHz, [D<sub>6</sub>]benzene, TMS):  $\delta = -2.5$  ppm; MS (70 eV, EI): m/z: 534 [ $M^+$ ], 461 [ $M^+$ -SiMe<sub>3</sub>), 73 (SiMe<sub>3</sub>); HRMS:

calcd for  $C_{26}H_{54}Si_6$ : 534.2841; found: 534.2806. The very low yield of 9 is due to the formation of tetrahedrane 5 and hydrogen-substituted tetrahedrane 8, which were also produced under the reaction conditions together with 9.

Received: May 11, 2005 Published online: July 25, 2005

**Keywords:** silicon · small ring systems · solid-state structures · strained molecules · tetrahedranes

- [1] S. Osawa, M. Sakai, E. Osawa, J. Phys. Chem. A 1997, 101, 1378.
- [2] a) R. Glilardi, M. Maggini, P. E. Eaton, J. Am. Chem. Soc. 1988, 110, 7230; b) R. Glilardi, M. Maggini, P. E. Eaton, J. Am. Chem. Soc. 1988, 110, 7232.
- [3] O. Ermer, P. Bell, J. Schäfer, G. Szeimies, Angew. Chem. 1989, 101, 503; Angew. Chem. Int. Ed. Engl. 1989, 28, 473.
- [4] a) Y. Xie, H. F. Schaefer III, Chem. Phys. Lett. 1989, 161, 516; b) Y. Xie, H. F. Schaefer III, Chem. Phys. Lett. 1990, 168, 249.
- [5] G. Maier, Angew. Chem. 1988, 100, 317; Angew. Chem. Int. Ed. Engl. 1988, 27, 309.
- [6] a) R. F. Peterson, Jr., R. T. K. Baker, R. L. Wolfgang, Tetrahedron Lett. 1969, 4749; b) P. B. Shevlin, A. P. Wolf, J. Am. Chem. Soc. 1970, 92, 406; c) L. B. Rodewald, H. Lee, J. Am. Chem. Soc. 1973, 95, 623; d) G. Maier, M. Hoppe, K. Lanz, H. P. Reisenauer, Tetrahedron Lett. 1984, 25, 5645.
- [7] G. Maier, J. Nuedert, O. Wolf, D. Pappusch, A. Sekiguchi, M. Tanaka, T. Matsuo, H. Watanabe, J. Am. Chem. Soc. 2002, 124, 13819.
- [8] A. Sekiguchi, M. Tanaka, J. Am. Chem. Soc. 2003, 125, 12684.
- [9] a) G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Angew. Chem. 1978, 90, 552; Angew. Chem. Int. Ed. Engl. 1978, 17, 520; b) G. Maier, S. Pfriem, U. Schäfer, K. D. Malsch, R. Matusch, Chem. Ber. 1981, 114, 3965.
- [10] G. Maier, D. Born, Angew. Chem. 1989, 101, 1085; Angew. Chem. Int. Ed. Engl. 1989, 28, 1050.
- [11] Crystal structure analysis of 9: single crystals were grown from a solution in ethanol. A colorless crystal ( $\approx 0.4 \times 0.3 \times 0.2 \text{ mm}^3$ ) was used for X-ray diffraction data collection on a MacScience DIP2030 K Image Plate Diffractometer with graphite-monochromated  $Mo_{K\alpha}$  radiation ( $\lambda = 0.71070 \text{ Å}$ ). Crystal data for 9 at 120 K:  $C_{26}H_{54}Si_6$ ,  $M_r = 535.23$ , triclinic, space group =  $P\bar{1}$ , a =9.5100(7), b = 10.0500(9), c = 11.6350 (12) Å,  $\alpha = 102.488(5)$ ,  $\beta = 104.540(5)$ ,  $\gamma = 114.754(5)^{\circ}$ ,  $V = 909.8(1) \text{ Å}^3$ , Z = 1,  $\rho_{\text{calcd}} =$ 0.997 gcm<sup>3</sup>, total reflections collected = 9434, unique reflections = 4051 ( $R_{\rm int}$  = 0.029),  $2\theta_{\rm max}$  = 56.06, completeness to  $\theta$  = 91.9%, GOF=1.042. The final R factor was 0.0471 ( $R_W$ = 0.1367 for all data) for 3325 reflections  $I_o > 2\sigma(I_o)$ . The structure was solved by direct methods and refined by the full-matrix least-squares method by using the SHELXL-97 program. CCDC-265873 contains the supplementary crystallographic data for 9. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.
- [12] a) J. D. Dill, A. Greenberg, J. F. Liebman, J. Am. Chem. Soc. 1979, 101, 6814; b) T. Clark, G. W. Spitznagel, R. Klose, P. von. R. Schleyer, J. Am. Chem. Soc. 1984, 106, 4412; c) D. Cremer, E. Kraka, J. Am. Chem. Soc. 1985, 107, 3811.

5973